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Hillslope hydrological response to precipitation is extremely complex and poorly modeled. One possible 
approach for reducing the complexity of hillslope response and its mathematical parameterization is to 
look for macroscale hydrological behavior. Hillslope threshold response to storm precipitation is one such 
macroscale behavior observed at field sites across the globe. Nevertheless, the relative controls on the 
precipitation-discharge threshold poorly known. This paper presents a combined model development, 
calibration and testing experiment study to investigate the primary controls on the observed precipita­
tion-discharge threshold relationship. We focus on the dominant hydrological processes revealed in part 
one of this two-part paper and with our new numerical model. replicate the threshold response seen in 
the discharge record and other hydrometric and tracer data available at the site. We then present a series 
of virtual experiments designed to probe the controls on the threshold response. We show that the 
threshold behavior is due to a combination of environmental (storm spacing and potential evapotranspi­
ration) and geologic (bedrock permeability and bedrock topography) factors. The predicted precipitation­
discharge threshold subsumes the complexity of plot-scale soil water response. We then demonstrate its 
use for prediction of whole-catchment storm discharge at other first order catchments at Maimai and the 
HJ Andrews Experimental Forest in Oregon. 

Introduction 

Hillslope hydrology still lacks the compact organization of 
empirical data and observations of hydrological response to pre­
cipitation events that might facilitate extrapolation to and predic­
tion of hillslope behavior in different places. Hillslope hydrology 
models based on our current small scale theories emphasize the 
explicit resolution of more and more of the unknown and unknow­
able heterogeneities of landscape properties and the resulting pro­
cess complexities (McDonnell et aI., 2007 ). While the util ity of a 
search for macroscale laws was enunciated over 20 years ago 
(Dooge, 1 986), few studies have been able to even observe macro­
scale behavior given the enormous logistical challenge for charac­
terizing whole-hillslope response. The heterogeneity in hills lope 
soil, bedrock, and topographic conditions and complexity of the 
spatial and temporal rainfall and throughfall input are still extraor­
dinarily difficult to quantify and include in macroscale descriptions 
of hillslope and catchment behavior. 
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Graham et al. (this issue) presented a new macroscale percep­
tual model of subsurface flow processes at the well studied Maimai 
experimental watershed (McGlynn et aI. , 2002 ). This work was 
based on whole-hills lope excavation of subsurface flow paths and 
detailed hillslope scale irrigation aimed at identifying the domi­
nant subsurface flow pathways and the role of bedrock topography 
and bedrock permeability on hillslope scale hydrological processes. 
The complexities of hillslope response and heterogeneity of the 
hills lope s ite at Maimai could be summarized by three key process 
statements :  ( 1 )  A connected preferential flow network located at 
the soil/bedrock interface dominates lateral water and solute 
transport (with very high flow and transport velocities ranging 
from 6 to 21 m/h). ( 2 )  The bedrock surface controls the subsurface 
flow routing (where the filling of small depressions along the bed­
rock surface results in threshold lateral subsurface flow). ( 3 )  Verti­
cal loss to the permeable bedrock is  large (up to 3 5 %  of the 
precipitation input) delaying lateral flow initiation and reducing 
lateral flow volumes. 

Here we take the perceptual model of hillslope behavior devel­
oped by Graham et al. ( this issue) and apply the dominant pro­
cesses modeling concept of Grayson and Bliischl ( 2000) to 
construct, test and use a macroscale rainfall-runoff model for the 
Maimai hillslope. Within the dominant processes philosophy, only 

esipp
Text Box
This file was created by scanning the printed publication.  Text errors identified by the software have been corrected: however some errors may remain.



78 c.s. Graham, JJ. McDonnell/Journal of Hydrology 393 (2010) 77-93 

the dominant flow processes, in this case the three l isted above are 
incorporated into model structure. This philosophy is motivated by 
the difficulty in identifying and quantifying the myriad complex 
and heterogeneous hydrological processes at a given site. Our 
dominant processes approach is also motivated by the finding that 
only a small number of processes may dominate lateral subsurface 
flow and transport at the hiIIslope scale. We translate the hydro­
logical processes identified at Maimai into a simple, low dimen­
sional conceptual mathematical model. This follows similar 
model development work at Maimai and elsewhere (Seibert and 
McDonnell, 2002; Son and Sivapalan, 2007; Weiler and McDonnell ,  
2007 ). In this way the experimentalist works directly with the 
modeler, both in the experimental design to determine the domi­
nant flow processes, and in model design to accurately implement 
the experimental findings. 

We evaluate our new model using a multiple objective criteria 
framework (Gupta et aI. , 1 998 ) incorporating extensive hydromet­
ric and tracer data available from at Maimai s ite. We then use this 
new model as a learning tool to shed new light on whole-hiIIslope 
threshold responses to storm rainfall. Analysi s  of long term data 
records of flow at several field sites around the world has shown 
that such hills lope threshold response ( i.e. the precipitation 
threshold before significant lateral subsurface flow is initiated) is 
a fundamental constitutive relation in hydrology (Buttle et aI., 
2004; Mosley, 1 979; Peters et aI. , 1 995;  Weiler et aI. , 2006; Whip­
key, 1 965 ). While this threshold behavior is a potential macroscale 
descriptor of hills lope response to storm precipitation, the domi­
nant controls on the magnitude of the threshold are not well 
known. While catchment geologic factors ( e.g. soil depth, bedrock 
permeability, etc. (Tromp-van Meerveld and McDonnell, 2006b; 
Uchida et aI., 2005 ) )  and catchment environmental factors (e.g. 
antecedent moisture conditions (Tani, 1 997; Tromp-van Meerveld 
and McDonnell, 2006a) )  have been proposed as possible controls, 
the relative importance of each remains unclear and unresolved. 

Two specific hypotheses have been previously proposed to ex­
plain the threshold relationship between rainfall and resulting sub­
surface stormflow: ( 1 )  fill and spill ,  and ( 2 )  pre-storm soil moisture 
deficit. In the fill and spill hypothesis, subsurface storage at the 
base of the soil profile must be filled (often in saturated patches )  
to  connect the upslope areas with the base of the hillslope (Spence 
and Woo, 2002; Tromp-van Meerveld and McDonnell, 2006b). 
Accordingly, the permeability of the bedrock and the volume of 
subsurface storage that must be filled are the primary controls 
on the initiation of lateral subsurface flow. Alternatively, the pre­
storm soil moisture deficit hypothesis (Tani, 1 997; Tromp-van 
Meerveld and McDonnell, 2006b) suggests that filling of the mois­
ture deficit in the soil profile is  a prerequisite for lateral subsurface 
flow. This  hypothesis is supported by an apparent change in the 
threshold under different antecedent moisture conditions. While 
both factors may operate in concert with one another, the relative 
influence of fill and spill and soil moisture deficit factors on the 
threshold response to precipitation has not been tested to date­
largely because of the extremely small sample size of experimental 
hiIIslopes and l imited range of climate and geology conditions ex­
plored to date. 

Here we develop and then use our new model to test alternative 
hypotheses of controls on the threshold response to precipitation 
for diverse climate and geology. We use our model as a learning 
tool to explore how subsurface processes represented in our model 
structure may link to those properties that can be extracted from a 
long terms data record, such as the threshold for initiation of storm 
runoff, and the relationship between the excess precipitation and 
runoff. The new understanding of the controls of the threshold 
relationship is then tested on a number of different first order 
catchments at Maimai and at the HJ Andrews Experimental Forest 
in Oregon, USA. We use readily available data for storm spacing, 

evaporative demands and storm size extracted from the long term 
record at these sites to demonstrate how the complexity of catch­
ment response to precipitation can be collapsed to the threshold 
metric to allow for simple macro scale model prediction of catch­
ment discharge. 

Study site and model development 

Site physical and process description 

We use the experimental work of Graham et al. (this issue) at 
the Maimai Experimental Catchments as the basis for model devel­
opment and the virtual experiments aimed at understanding the 
controls on thresholds. The Maimai Experimental Catchments, 
South Island, New Zealand, have been a s ite of continuing hydro­
logical research for over 30 years ( see review in McGlynn et al. 
( 2002 ) ). While isotopic work has shown that the majority of hill­
slope discharge and streamflow at Maimai is pre-event water 
stored for weeks to months (McDonnell, 1 990; Mosley, 1 979; 
Pearce et aI. , 1 986; Sklash et aI. , 1 986), tracer experiments have 
demonstrated the ability of the hillslopes to rapidly transmit quan­
tities of applied water at high velocities over long distances (Bram­
mer, 1 996; Mosley, 1 979, 1 982). Graham et al. ( this issue) showed 
that lateral preferential flow is  confined to the soil bedrock inter­
face where flow velocities are very high ( up to 21 m/h), routed 
by the bedrock topography. Filling subsurface storage in topo­
graphic pools upon the bedrock surface is a prerequisite for down­
slope connection and s ignificant lateral subsurface flow. Once 
storage is filled, preferential flow paths seen on the bedrock surface 
have been shown to be connected upslope for distances up to 8 m, 
and appear to be stationary in time and space (Graham et aI. , this 
issue). The bedrock, while previously considered effectively imper­
meable ( McDonnell, 1 990; Mosley, 1 979), was shown to be semi­
perveous, with bedrock hydraulic conductivity on the order of 1 -
3 mm/h, leading t o  the potential o f  substantial fluxes o f  water 
and nutrients through the bedrock (Graham et aI., this issue). Over­
land flow has not been observed at this site except in limited areas 
near the stream channel. Vertical preferential flow from the soil 
surface to depth during rainfall events has been hypothesized to 
occur in vertical cracks seen throughout the catchment dissecting 
the soil profile (Graham et aI. , this issue; McDonnell. 1 990). Mixing 
of old and new water is thought to occur in both the soil column as 
well as in transient groundwater that forms at the soil bedrock 
interface, leading low amounts of new water observed in trench 
discharge and streamflow (Pearce et aI., 1 986; Ski ash et aI. , 1 986). 

Description of the numerical model 

The numerical model ( called MaiModel ) was built to incorpo­
rate the dominant processes that control subsurface flow at the 
Maimai hillslope as described by Graham et al. (this i ssue). Key 
components of MaiModel are 

• Preferential flow pathways are connected, and located at the 
soil bedrock interface. 

• Lateral subsurface travel velocities are high. 
• Subsurface storage on the bedrock surface is explicitly 

designated. 
• The bedrock is  permeable. 

In general terms, MaiModel consists of two reservoir types, soil 
storage and bedrock pool storage, which are fully distributed 
across the model domain (Fig. 1 ) . Two bulk reservoirs are included 
for system losses of evapotranspiration and bedrock leakage. 
Water is transmitted vertically from the soil surface, through the 
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Fig. 1. Schematic of model structure. Fluxes include precipitation (P), evapotrans­

piration (£T), vertical percolation through the soil profile (Q,oil), leakage into the 
bedrock «1,edeock) and lateral subsurface flow along the bedrock surface «4.5s). C2t.ss 
is a function of the volume of water in the cell (Spoo') and the subsurface storage 
volume (Vpoo')' Q,oil is a function of the soil saturation (5), while Q"edwck i s  a function 
of Spoo" 

soil storage reservoir to the subsurface storage reservoir, with no 
lateral communication between adjacent soil reservoirs. Lateral 
subsurface flow is  restricted to flow along the bedrock surface 
among the bedrock pools, consistent with the current experimen­
tal evidence of water routing at the soil bedrock interface. Bedrock 
leakage is  driven by water table height, and there is no reemer­
gence of water at the hillslope once it has percolated into the bed­
rock. Evapotranspiration is  driven by the potential evaporation 
rate, and l imited by soil moisture. 

Model structure 

In MaiModel precipitation is split into canopy interception and 
soil reservoir recharge. A map of tree locations by Woods and Rowe 
(unpublished data, 1 996) was used 'to identify areas of intercep­
tion. Interception rates are based on published values from a sim­
ilar aged radiata pine (Pinus radiata) forest, showing an 
interception rate of 38% by the canopy (Putuhena and Cordery, 
2000). Interception was confined to areas of crown cover, which 
were estimated as the area within 3 m of the tree stems. 

Throughfall enters each soil reservoir and i s  fully mixed with 
pre-event soil moisture, following Weiler and McDonnell (2007) 
and Vache and McDonnell (2006). Assuming a unit head gradient, 
vertical drainage to the subsurface storage reservoir (<2.oil) [e T-1] 
is equal to the soil relative hydraulic conductivity (k(O)), using the 
formula (Brooks and Corey, 1 964): 

(1 ) 
where ksoil is the saturated hydraulic conductivity [L T-1], A the grid 
cell area [L2], f3 a texture dependent exponent [dimensionless], and S 
is water saturation [dimensionless]: 

S = 0 - Or 
Os - Or (2) 

where 0 is profile average water content [L3 L -3], and Or and Os are 
the residual and saturated water content, respectively [L3 L -3]. 
<2.oil = 0 if 0 is less than the residual water content. Water drains 
vertically from the soil reservoirs to subsurface storage reservoirs, 
and does not drain downslope into adjacent soil reservoirs. 

Evapotranspiration (ED is modeled as a boundary flux, rather 
than as root uptake, and is  restricted to the soil reservoir. ET i s  a 
function of both the reservoir water storage and the potential 
evaporation rate (PED (Seibert, 1 997 ) :  

ET = PET(tod)SA (3) 
where PET [L T-1] is a function of the time of day (tad) [T] and the 
daily average PET: 

PET(tod) = PET daily sin ( 2n(tod -
2
2
4

)) (4) 

We assume that PET peaks at 1 4: 00 h and reaches a minimum at 
02 :00 h of each day, and PET i s  removed evenly throughout the soil 
profile. 

Water drains vertically from the soil reservoir to subsurface 
storage reservoirs representing topographic pools on the bedrock 
surface. Water in the subsurface storage reservoir will either drain 
into the bedrock or be routed downslope along the bedrock to adja­
cent subsurface storage reservoirs,  following the fill and spill 
hypothesis of Tromp-van Meerveld and McDonnell (2006b). All 
subsurface storage reservoirs are connected, and flow routing is 
based on topography, with lateral subsurface flow ((2I.ss) split be­
tween the (up to) eight adjacent downslope reservoirs, weighted 
by downslope gradient following the M8 flow routing algorithm 
(Quinn et aI., 1 99 1 ). 

Lateral subsurface flow ((2Iss) is governed using the Dupuit­
Forchheimer assumption for a s loping aquifer (Freeze and Cherry, 
1 979 ), assuming that the aquifer surface is parallel to the bedrock 
surface. (2Iss is a function of the exchange length ( in this case 
equivalent to grid reservoir width (w) [Ll), local slope (5) [L L-1], 
the lateral hydraulic conductivity kLSS [L T-1], the volume of stored 
water (Spool) [L3] greater than the subsurface storage volume (Vpool) 
[L3] :  

Q 
_ wskLSS(Spool - Vpool) 

LSS - A (5) 

(2Iss is defined as zero when Spool> Vpool. The term SPOOI�Vpoo, is equiv­
alent to the water table height above the threshold of subsurface 
storage. 

As per field measurement of infiltration into the bedrock at the 
site (Graham et aI., this issue), bedrock leakage is a function of 
water table height and a bedrock leakage coefficient (Cbedrock) [T-1]: 

(6) 
For the lateral and bedrock leakage flux rates, it is  important to 

note that in the model formulation the subsurface storage reser­
voirs are perfect boxes, and the pool volume is equal to the grid cell 
cross sectional area multiplied by the water table height. In this 
way, Eq. (7) is  equivalent to: 

where h [Lpood is the water table height. 

(7) 

The modeled tracer is assumed to be instantaneously fully 
mixed in the injection soil reservoirs, and were added as a line 
source in all cells 35 m upslope of the hillslope base. Tracer fluxes 
are l imited to advective transport vertically between soil and sub­
surface storage reservoirs, and laterally between subsurface stor­
age reservoirs. The full mixing assumption of the soil reservoirs 
also holds for the subsurface storage reservoirs as the advected tra­
cer and water move downslope. While tracer can percolate into the 
bedrock, no tracer is  lost to evapotranspiration. While the lack of a 
specific diffusion/microscale dispersion component to the tracer i s  
a simplification, we believe that at  the  spatial and temporal scale of 
the model (hillslope, event based) these processes have a relatively 
minor impact of solute transport. A similar simplification is  of full 
mixing of tracer in the soil and subsurface storage reservoirs. 
Again, this simplification was deemed necessary to retain the sim­
plicity of the model and low number of parameters. Subsequently, 
caution must be used when applying this model to reactive 
transport. 

The grid size of the model is flexible, in this case discretized 
using a 1 m2 elements, with the soil depth prescribed by the user. 
Currently, a fixed time step is used in the model code, in this case 
2 min. The space and time discretization are user inputs, and both 



80 c.B. Graham, JJ. McDonnell/Journal of Hydrology 393 (2010) 77-93 

were determined via sensitivity analyses before the calibration 
was begun. 

Multi-criteria model calibration and uncertainty analysis 

We capitalize on two extensive data sets from field campaigns 
at the site for model parameterization and calibration. Woods 
and Rowe (1 996) built a 1 m grid Digital Elevation Model (OEM) 
based on 755 survey points over an area of 2830 m2, which was 
used in the model for flow routing. In addition, the interception 
module is  based on a map of tree locations by Woods and Rowe 
( unpublished data, 1 996). For 65 days beginning March 1 0, 1 995 
(Brammer, 1 996), monitored hillslope discharge at the trench sys­
tem built by Woods and Rowe (1 996). A larger section of hillslope 
is  modeled than drains into the collection trench, to minimize edge 
effects. In addition to monitoring hillslope discharge, Brammer 
( 1 996) added a Br- tracer solution 35 m upslope of the trench as 
a 20 m wide l ine source injected directly into the soil profile 
10 cm below the soil surface. Precipitation, hillslope discharge 
and tracer breakthrough were monitored at the trench for 45 days 
after tracer application. Rainfall and trench discharge were re­
corded in 1 0  min intervals, while tracer breakthrough at the trench 
was measured in grab samples during and between storms. 
Reanalysi s  of the Brammer (1 996) tracer concentrations and trench 
discharge show that 1 5% of the tracer was recovered over 45 days, 
and the runoff ratio for the duration of the monitoring was 2 1 %. 
The tracer breakthrough and trench hydrograph were used for 
model calibration. For more details about the hillslope gauging sys­
tem, see Woods and Rowe (1 996). For more details on the tracer 
injection, see McGlynn et al. (2002 ). 

MaiModel was calibrated using Monte Carlo analysis with mul­
tiple criteria including the hydrometric and tracer breakthrough 
data. Using the 40 day Brammer (1 996) hyetograph as input, 
1 0,000 s imulations were run with five model parameters varied 
in calibration: soil hydraulic conductivity (ksoil), bedrock leakage 
coefficient (Cbedrock), lateral hydraulic conductivity ( kLSS) ,  active 
pore space (factive, or the product of the soil depth and the active 
porosity (Os-Or), and the subsurface storage volume (VpOO!)' Chang­
ing the residual water content, saturation water contents and soil 
depth had the same impact on the active pore space, so one factor, 
0" was chosen for calibration. The active pore space is presented as 
the variable in further analysis. Monte Carlo analyses were per­
formed varying each parameter randomly across ranges of 0-
1 000% of field measurements or the physically possible range, to 
ensure that the entire parameter space was interrogated. Field 
parameter measurements and ranges used in the model calibration 
are presented in Table 1. 

The second subset of model parameters was assigned to field 
measurements due to either parameter uncertainty or model 

Table t 
Calibration parameter ranges and sources for parameter ranges. Calibration param­

eters include bedrock leakage coefficient (Cb"'cock), soil and bedrock hydraulic 

conductivity (k,oH and kcss), subsurface pool volume (Vpoo1) and active pore space 

({,,"v,) VpoOI was not measured in field and was constrained by a pre-calibration 
sensitivity analysis. 

Parameter Range Source 

cbedrock 0-0.0284 1 0,000% maximum observed in field 

lis (Graham et aI., this issue) 
ksoil 0-3 m/h 1 0,000% maximum observed in field 

(McDonnell,1 990) 
kcss 0-30 mlh Greater than range observed in field 

(Graham et aI., this issue) 

Vpool 0-0.01 m3 Sensitivity analysis 

factive 0-45% Spans range of field measured porosity 

(McDonnell, 1 990) 

insensitivity. A spatially detailed soil depth map was unavailable, 
so soil depth was set to the average soil depth (0,6 m: McGlynn et 
aI., 2002 ) for the modeled domain. While modeling variations in 
soil depths has been shown to be important for prediction of hill­
slope dynamics at other field sites ( e.g. Tromp van Meerveld and 
Weiler (2008 ), previous work at Maimai has indicated that the 
soil surface and bedrock surface topography are similar at the 
hills lope scale, and the soil depth is  relatively uniform across 
the hil lslope (Woods and Rowe, 1 997 ). In preliminary calibration 
runs, MaiModel was found to be insensitive to the Brooks and 
Corey moisture release coefficient ([3). so it was set at a value 
appropriate for the silt loam soil texture measured in the field 
( Carsel and Parrish, 1 988). As mentioned above, porosity, residual 
and saturation water contents are interrelated with respect to 
model function, so residual water content was set as a variable 
during the calibration, and the porosity and saturation water con­
tent were set to field measured values ( from McDonnell. 1 990). 
No measurements of PET were available at the site for the time 
of record. At the nearby town of Reef ton (1 0 km northwest of 
the hillslope), measured evaporation rate of 7 1 4  mm/year has 
been reported (Baker and Hawke, 2007 ). A PET value of 6 mm/ 
day was chosen to result in a modeled actual evapotranspiration 
of 7 1 4  mm/year (1 .95 mm/day), 

Model performance with respect to the hillslope discharge hyd­
rograph was assessed by the Nash Sutcliffe efficiency factor (E) 
(Nash and Sutcliffe, 1 970): 

E = 1 _ DQo - Qm)2 
D�_�)2 

(8) 

where Qo is observed discharge, C1n is modeled discharge and Qo is 
the mean observed discharge. An E value greater than 0 indicates 
the modeled results fit measured discharge better than the mean 
discharge. An E of 1 .0 is  a perfect fit. For calibration purposes, an 
E of over 0.8 was considered an acceptable fit. E calculations were 
made for six subsets of the time series, including the entire 40 days 
after tracer application, and for the five largest storms of the data 
record (storms Bl-B5) .  Only parameter sets with acceptable E for 
both the 40 day record and each individual storm were considered 
behavioral. 

Due to temporally irregular measurements of tracer break­
through at the hills lope, model tracer breakthrough was compared 
on a storm by storm basis during the Brammer (1 996) experiment 
timeframe. Both the spatial pattern of tracer breakthrough along 
the trench face and storm cumulative breakthrough were com­
pared for each of the five recorded storms. Parameter sets with a 
correlation coefficient greater than 0.8 for both the spatial and 
temporal breakthrough comparisons were considered a good fit. 
Cumulative tracer breakthrough for the 40 day time series was also 
used as a model evaluation criterion. Due to uncertainties in tracer 
recovery, modeled tracer recovery of within 2.5% of measured val­
ues was deemed behavioral. After Monte Carlo calibration. the 
parameter sets deemed behavioral were analyzed, and the model 
run with the highest minimum storm E was chosen for additional 
virtual experiments. 

Virtual experiment design 

We ran all virtual experiments using a rainfall time series with 
multiple replications of storm B5 (April 26 through April 27, 1 99 5 )  
from the calibration hyetograph a s  input. Storm B5 was chosen for 
the virtual experiments due to its moderate size, variable intensity, 
and the relatively good model fit from calibration. This 50.6 mm 
storm had a duration of 24 h, average intensity of 2 .1  mm/h, and 
maximum 10 min intensity of 30 mm/h occurring 70 min after 
the start of the storm (the peak 60 min intensity of 1 1 .8 mm/h 
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occurred at 240 min). This storm was  the  largest of the five storms 
recorded after tracer application and exhibited the highest rainfall 
intensity. Measured discharge was 23.0 mm ( runoff ratio; 44%), 
with peak discharge of 3 .4 mm/h, 400 min after the start of the 
storm. The hyetograph and hydrograph were skewed to the left 
( skew; 3 .4 and 2.9, respectively) .  Rainfall (87.2 and 87.4 mm) fell 
in the previous 7 and 14 days. Analysis of 2 years of precipitation 
records at the site ( from Beven and Freer ( 2001 ) ) indicates that this 
storm falls in the upper 25% and 5% of storms with respect to rain­
fall total precipitation and average intensity, respectively. The cal­
ibrated model had a Nash Sutcliffe efficiency of 0.95 for this storm. 

To allow for the impact of antecedent moisture conditions in 
the virtual experiment hyetographs, storm B5 was replicated nine 
times, bracketed between 1 and 21 days antecedent drainage time 
before each replication. With the soil reservoirs initially saturated, 
the rainfall time series consisted of 1 0  days drainage followed by 
the B5 hyetograph. The B5 hyetograph was then repeated nine 
times with 1, 1 ,  3,  3,  5, 7 ,  7 ,  1 4, and 21 days drainage between 
storms ( storms Vl-V9). The model was run with the virtual exper­
iment hyetograph 1 1  times, with the total storm precipitation 
scaled by a factor of 0. 1 ,  0.2, 0.5, 0.75, 0.9, 1 ,  1 . 1 .  1 .5 ,  2 ,  5, and 1 0  
( 5-5 06 m m  per event). Total storm precipitation was scaled by 
altering the duration of the storm to reach the desired total storm 
rainfall amount. For events smaller than the base case storm 
( 5 1  mm), the hyetograph was truncated once the desired rainfall 
amount was reached. For storms larger than the base case storm, 
the storm time series was repeated until the desired precipitation 
amount was reached. Depending on the size (duration) of the vir­
tual experiment events, the duration of the nine storm VE hyeto­
graph ranged from 95 to 1 85 days. For each s imulation, recorded 
output included water balance components (d ischarge, bedrock 
leakage, ET and soil moisture storage), and tracer fluxes. 

The virtual experiment hyetograph was used with the parame­
ter set from the best fit model calibration. The model was then run 
with each of the scaled hyetographs (between 5 and 506 mm pre­
cipitation per event). Total event precipitation and total storm dis­
charge were calculated, binned by antecedent moisture and 
plotted. The threshbld and excess precipitation/discharge slope 
for the calibrated model were determined based on all storms with 
a runoff ratio greater than 1 % using a least squares regression. 

For soil moisture deficit experiments, the potential evaporation 
rate was varied, and the drainage time between storms from the 
virtual experiment hyetograph was analyzed as the second vari­
able. In 1 0  separate simulations for each of the 9 scaled precipita­
tion hyetograph, the potential evaporation rate was scaled by a 
factor of 0, 0. 1 ,  0.2, 0.5,  0.75,  1 ,  1 .5 ,  2, 5, and 1 0, resulting in 
9 * 1 0  ; 90 simulations. The process used to determine the thresh­
old and slope for the calibrated model was then repeated using 
model runs with the varied antecedent drainage time and potential 
evaporation. 

For the virtual experiments that focused on the effect of fill and 
spill factors, only storm V5, with 3 day drainage was used for anal­
ysis . Again, the scaled virtual experiment hyetographs were re­
peated while also scaling the two fill and spill parameters: 
bedrock permeability (Cbedrock) and subsurface storage volume 
(Vpool )' Both bedrock permeability and subsurface storage volume 
were scaled by a factor of 0, 0.1 , 0.2, 0.5, 0.75, 1 ,  1 .5 ,  2 ,  5 ,  and 1 0  
( 1 0  factors) ,  and scaled concurrently, to create 1 00 s imulations 
for each of 1 1  event s izes. 1 1  * 1 00 ; 1 1 00 simulations were run 
covering the ranges of parameter values and event sizes. The pro­
cess used to determine the threshold and slope for the calibrated 
model was then repeated using model runs with the scaled bed­
rock permeability and subsurface storage volumes. 

A final set of virtual experiments tested the hypotheses that 
neither or both fill and spill or soil moisture deficit are the cause 
of the threshold. PET, bedrock leakage coefficient and subsurface 

storage volumes were set to zero, to determine if a third mecha­
nism beyond "fill and spill" and "soil moisture deficit" could be 
responsible for the thresholds. 

Results 

Multi-criteria model calibration 

The calibrated model reproduced both the hydrometric and tra­
cer response to precipitation. The calibrated model fit the mea­
sured hydrograph well at both the 40 day and individual event 
time scale (Fig. 2 ) .  While the smaller events were generally over­
predicted, the large events were well modeled. The hydrograph 
recessions were generally underpredicted, with the model exhibit­
ing a faster recession than measured discharge. Peak discharge for 
each event was well represented. While observed patterns of soil 
moisture were unavailable for comparison, the spatial pattern of 
hillslope discharge was well correlated with observed patterns. 
Fig. 3 shows six representative periods of high soil moisture, in this 
case occurring at peak modeled discharge during storm B4 and in 
1 h intervals after peak. Soil moisture and trench discharge, are 
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Fig. 2. (a)  Measured (black) and modeled (grey) hydrograph (including storms Bl­

B5) with 1 3  simulations that matched all objective criteria. The small events were 

generally overpredicted, while peak discharge for the five events were well fit. For 

individual events, the rising limb was well modeled, while the modeled recession 

was generally steeper than the measured. (b) A close up of event B2 shows the 
range of modeled responses bracket the measured response. B2 was the most 

difficult to simulate, likely due to the complex double hydrograph. 
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Fig. 3. Modeled spatial pattern of soil moisture (sum of soil and subsurface bedrock storage expressed in em water). Pictured are peak modeled hillslope discharge (a)  and 1 h 

time increments until 5 h after peak (b-f). Contour intervals are in 1 em increments. Hillslope base is at left side of figure. 

concentrated in the topographic hollow in the center of the mod­
eled area of the hillslope, 

Our 9 calibration objective criteria provided different levels of 
model discrimination (Table 2,  Fig. 4). The hydrographs and cumu­
lative tracer breakthrough were effective in reducing the number of 
behavioral parameter sets between 96% and 99%. The spatial and 
temporal tracer breakthroughs were not as effective at reducing 
the parameter range. Of the 1 0,000 model runs, 294 (2.9%) param­
eter sets led to acceptable model fits of trench discharge during the 
entire 40 day record (where an acceptable fit was an E greater than 
0.8). The best fit parameter set had an E of 0.95, For storms B l ,  B3,  
B4 and B5, a similar number of model runs (parameter sets ) were 

Table 2 

found to be acceptable (2 60-4 1 6  (2,6-4.2%)), with maximum E of 
0.97-0.98. Fewer parameter sets led to acceptable model fits of 
storm B2 (E > 0.8 for 1 02 ( 1 .0%) parameter sets ) ,  though a maxi­
mum E of 0.97 was obtained for one parameter set. 3 00 (3 .0%) mod­
el runs had between 1 1 .5% and 1 6.5% (±2.5% of measured) of tracer 
breakthrough during the flow time series, The experimental tracer 
temporal and spatial breakthrough were acceptably reproduced by 
a larger fraction of parameter sets; 1 462 ( 1 4.6%) correctly modeled 
temporal tracer breakthrough, while 482 7  (48.3%) correctly mod­
eled the spatial breakthrough. 

Of the 1 0,000 parameter sets, 13 (0, 1 %) met all nine objective 
criteria, Four criteria ( storms 1 , 2 ,  and 3 ,  and the cumulative tracer 

Parameter range reduction (in % of initial range) and number of behavioral parameter sets after calibration using each objective criterion ( 1 0,000 calibration simulations). 

Cbedrock ksoil kISs Vpool factive Criteria Behavioral parameter sets 

40 day discharge 58 2 5 1  45 62 E>0.8 294 

Storm 1 discharge 72 2 47 2 63 E> 0.8 260 

Storm 2 discharge 75 6 56  83  68 E> 0.8 1 02 

Storm 3 discharge 60 2 43 24 47 E> 0.8 41 6 

Storm 4 discharge 56 2 47 1 8  58 E> 0.8 402 

Storm 5 discharge 56  2 30 34 47 E> 0.8 3 42 

Total cumulative tracer breakthrough 44 5 6 0 1 1 .5% " T" 1 6.5% 4827 

Tracer breakthrough temporal 0 1 R2 > 0.8 1 462 

Tracer breakthrough spatial 0 0 0 0 R2 > 0.8 300 

All criteria 86 6 56 85 78 13 
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Fig.4. Summary of MaiModel calibration. Acceptable parameter sets (bars) and the 

reduction in parameter uncertainty for each model criteria. Parameters : k,oH (D); 
kess (0); Vpool (e); Cbedmek (. ); f.eti" (+). Storm B2 had the lowest number of 
acceptable parameter sets. and the highest reduction in the parameter space for 
each variable. While the temporal tracer breakthrough was Cbedmek. 

breakthrough) were sufficient to determine the final group of 
acceptable parameter sets. Of the 294 simulations that acceptably 
modeled the entire 40 day trench hydrograph. 39 ( 13%) acceptably 
modeled all five storms. No parameter sets had acceptable fit for all 
storms but did not correctly model the 40 day hydrograph. Of the 
39  simulations with acceptable fit for all storms. 13  (33%) had 
modeled the cumulative tracer breakthrough adequately. 

Examination of parameter uncertainty within the calibrated runs 

Each objective criterion served to reduce the range of each mod­
el parameter (Table 2). To compare the reduction in the uncer­
tainty of each parameter after each objective criterion, the 
parameter reduction ratio computed for each parameter ( com­
puted as 1 - the ratio of the range of parameter values in behav­
ioral models vs. the range of the initial parameter distribution). A 
ratio of 0% for a given parameter and obj ective criterion indicates 
the criterion did not reduce the uncertainty in the parameter. 
while a ratio of 90% indicates the parameter is restricted to 10% 
of the initial range for behavioral models .  These values are relative 
as the initial parameter ranges chosen were different for each 
parameter. generally exceeding the range observed in the field 
(ksoil• Cbedrock, kLSS), the range of physically possible values (f.ctive), 
or the range possible determined through pre-experiment sensitiv­
ity analysis (VpOO\)' Nevertheless, they serve as a method to deter­
mine the relative strength of each objective criterion to reduce 
parameter uncertainty. 

The amount of uncertainty reduced by each objective criterion 
varied for each parameter (Table 2,  Fig. 4). For example. parameter 
sets that led to acceptably modeled tracer fluxes sampled from the 
entire initial range for drainable porosity. Parameter sets that 
acceptably modeled the 40 day and individual hydrographs, how­
ever, reduced the range of drainable porosity from 47% to 68%. Soil 
hydraulic conductivity, on the other hand, was insensitive to all of 
the objective criteria. While relatively few parameter sets resulted 
in acceptable cumulative tracer breakthrough ( 3.0%), this objective 
did little to reduce the uncertainty for any of the calibrated param­
eters except the bedrock leakage coefficient (43.6%). Using only the 
13 parameter sets that fit all criteria, the parameter uncertainty 

was reduced (3 5.9-62.6%) for all parameters except the soil 
hydraulic conductivity (3.7%). 

Of the 13 parameter sets deemed behavioral for all objective 
criteria. one was chosen as the base case for the virtual experi­
ments . The 13 parameter sets that met all of the model evaluation 
criteria were then ranked according to their goodness of fit to each 
of the objective criteria. The parameter set with the highest mini­
mum rank was chosen for the virtual experiments. For the best fit 
parameter set, model efficiency for the five storms ranged from 
0.92 ( storm B2 ) to 0.97 ( storm B 5 ), with a 40 day efficiency of 
0.95. Modeled cumulative tracer breakthrough was within 2% of 
the measured value. Modeled spatial and temporal patterns of tra­
cer breakthrough all fell in acceptable ranges. Best fit calibrated 
parameter values were close to field measured parameters. The 
drainable porosity was 0. 1 m3/m3 (compared to 0.05 m3/m3 mea­
sured in the field ( McDonnell, 1990)), bedrock leakage coefficient, 
4.25E-5 l /s ( compared to 2.63E-5 l /s (Graham et aI., this issue) )  
and lateral hydraulic conductivity, 25 .5  m/h (compared to  7.5 -
26 m/h based o n  measurements o f  tracer velocities between 6 
and 2 1  m/h, porosity of 0.45 m3/m3 and gradient of 56% (Graham 
et aI. , this issue) ). Soil hydraulic conductivity was calibrated to 
2.67E-4 mis, nearly an order of magnitude greater than observed 
values between 2. 7E-6 and 8.3E- 5 m/s (Mosley, 1979), l ikely 
due to the mixing of the preferential and matrix flow in the model 
structure. The average subsurface storage volume (calibrated to 
1.7E-3 m3, equivalent to 1.7 mm deep pools evenly over the bed­
rock surface) was not measured in the field. 

Virtual experiments with the calibrated model 

Calibrated model parameterization 
Using the calibrated model parameterization. the 1 1  scaled vir­

tual experiment hyetographs were applied, with storm total pre­
cipitation ranging from 5 to 506 mm ( for a subset of model 
hydrographs, see Fig. 5). For the base case realizations of storm 
V5 (50.6 mm), with 3 days antecedent drainage (the average inter­
storm duration at Maimai), bedrock leakage made up the largest 
part of the water balance. Leakage accounted for 23.7 mm (36% 
of applied rainfall) ,  with 18.2 mm (36%) as hillslope discharge 
and 15.9 mm (3 1%) as evapotranspiration. Soil storage served as  
a source for this simulated event, supplying 7 .2 mm of the  water 
lost through leakage. hillslope discharge and evapotranspiration. 

As the storm size was varied in the scaled hyetographs, total 
discharge ranged from 0 to 272.7 mm with the runoff ratio ranging 
from 0% to 57% ( Fig. 6). Trench flow was not observed for the two 
smallest events (5 and 1 0. 1  mm rainfall) ,  while the 25 mm storm 
yielded 3.6 mm of trench discharge ( runoff ratio = 14%). Therefore 
a threshold for lateral subsurface stormflow appeared to exist be­
tween 10 and 25 mm for storms with 3 days antecedent drainage 
time. Total storm discharge increased linearly (R2 = 0.999) after 
the threshold, with a slope of 0.45 mm discharge/mm precipita­
tion. The calculated threshold. equal to the x axis intercept. was 
17.7  mm precipitation. In the analysi s  below, the threshold refers 
to the x axis intercept ( reported in mm rainfall) ,  and the slope i s  
the slope of the  excess precipitation/discharge l ine  ( reported in  
mm discharge/mm precipitation). 

Soil moisture defidt 
For the application of the virtual experiment hyetograph using 

the calibrated model parameterization and the base case storm 
size (B5 ,  50.6  mm), total storm discharge was dependent on the 
antecedent drainage time. Total storm hillslope discharge de­
creased from 23.5 to 0.0 mm (runoff ratios decreased from 46% 
to 0%) for the storms with between 1 and 21 days of antecedent 
drainage (Table 3 ) . For the simulated storm (V1) with the shortest 
antecedent drainage time. 1 day, the water balance was split 
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Fig. 6. Whole storm precipitation vs. discharge for modeled events. using calibrated 

parameters and 3 days antecedent drainage ( storm V5). The estimated threshold is 

18 mm. and slope is 0.45 mm/mm (points taken from column 5 .  Table 3 ). 

between discharge ( 23 .5  mm or 46%), bedrock leakage (26.4 mm or 
52%) ,  evaporation ( 1 0.9 mm or 22%). The soil storage reservoir 
acted as a source for the additional water for all  simulations, as soil  
moisture storage decreased from event to event. For the storm 
with 21 days antecedent drainage time (V9), longer than any ob­
served at Maimai in the 2 year data record, discharge was reduced 
to 0 mm (0%),  and bedrock leakage to 5.2 mm ( 1 0%).  Evaporation 
increased to 64.4 mm ( 1 29%), with the soil storage reservoir again 
acting as a source. For the storms with long antecedent drainage 

times, rainfall filled the soil storage deficit and was then lost to 
evaporation. For storms with shorter antecedent drainage times, 
soil moisture deficit was quickly filled and precipitation was rou­
ted to the bedrock surface and lost to hills lope discharge and bed­
rock leakage. 

The rainfall threshold for producing subsurface stormflow for 
storm V5 (3 days antecedent drainage) was 1 7.7 mm (Fig. 6). Cal­
culated thresholds for the other events (time between events)  ran­
ged from 9.1  (1 day antecedent drainage time) to 60.8 mm (21 days 
antecedent drainage time) ( Fig. 7 , Table 4). The threshold was lin­
early related to the time between storms of the form 
Po = 9.7 mm + 2.5 mm/day (R2 = 0.984). The slope did not depend 
on the time between events,  varying from 0.56 to 0.57 mm/mm 
( Fig. 8 , Table 4).  

The 1 1  virtual experiment hyetographs were then run with the 
potential evaporation rate scaled between 1 0% and 1 000% of the 
calibration value of 6 mm/day ( 0.6-60 mm/day). For the following 
virtual experiments we will focus on storm V5, with 3 days ante­
cedent drainage, as similar patterns were seen for all events. 

As the potential evaporation rate was increased, actual modeled 
evaporation increased, and pre-event soil moisture decreased. 
These losses were balanced by a decrease in both discharge and 
bedrock leakage, as less water was available to drain vertically to 
the subsurface storage and lateral flow pathways. Once the PET in­
creased above 200% of the base case ( > 1 2  mm/h), evaporative 
losses from the soil profile were greater than the total storm pre­
cipitation, leading to a progressively depleted soil moisture profile. 
For the simulations with high potential evaporation rates ,  rainfall 
went towards filling soil storage and was subsequently lost to 
evapotranspiration. For simulations with lower potential evapora­
tion rates, soil moisture deficit was quickly filled and precipitation 
was routed to the bedrock surface and removed from the system as 
hillslope discharge and bedrock leakage. 
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Table 3 
Storm discharge and calculated threshold and excess precipitation/discharge slope for events vI -via using the calibrated model. 

Event Precipitation ( mm)  Antecedent drainage time (days) 

1 0 (V1 ) 1 (V2 ) 1 (V3) 3 (V4) 3 (V5) 5 (V6) 7 (V7) 14 (V8) 21 (V9) 28 (Vi a)  

5 a a 0 a a a a a a a 

1 0  a a a a a a a a a a 
25 a 5 8 4 4 1 a a a a 

38 3 1 5  1 5  1 1  1 0  8 5 a a a 

46 5 1 8  1 8  1 3  1 3  1 0  8 a a 

5 1  6 1 8  1 8  1 4  1 4  1 1  8 1 a a 

56  9 21  2 1  1 7  1 7  1 4  1 1  3 1 a 

76 1 7  3 1  3 1  2 6  26 23 20 1 2  6 3 

1 0 1  2 9  4 1  41  3 7  37 34 31  23 1 6  1 0  

253 98 1 1 0  1 1 0 1 06 1 06 1 03 1 00 9 1  85 78 
506 2 1 2  225 225 220 220 21 8 2 1 5  206 200 1 93 

Threshold 35 9 7 1 8  1 8  24 30 48 61  75  

Slope 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 
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Fig. 7. Dependence of precipitation/discharge threshold on soi l  moisture deficit ( antecedent drainage t ime and PET) and fill and spi l l  (bedrock leakage coefficient and 

subsurface storage volume). 

The precipitation/discharge threshold and the slope of the ex­
cess precipitation/discharge line for the soil moisture deficit virtual 
experiments were calculated in the same way as above. and only 
the summary results are presented here. The precipitation dis­
charge threshold for the event with 3 days antecedent drainage 
time (V5 ) ranged from 1 1 .8 mm (PET = O mm/day) to 1 04.8 mm 
(PET = 60 mm/day) (Figs. 7 and 9. Table 4). The slope of the excess 
precipitation discharge line decreased with increasing PET. ranging 
from 0.2 1 mm/mm (PET = 60 mm/day) to 0.62 mm/mm 
(PET = 0 mm/day) (Figs. 8 and 9, Table 4). The threshold for initia­
tion of hillslope discharge was linearly correlated with the potential 

evaporation rate, of the form Po = 1 1 .4 mm + 1 . 1  mm/( mm/day) ­
PET (R2 = 0.996). The slope of the excess precipitation discharge 
line (a )  was also linearly correlated of the form a = 0.6279 mm/ 
mm-0.007 (mm/mm)/( mm/day) * PET (R2 = 0.999). 

The antecedent potential evapotranspiration (APET), the prod­
uct of PET and the antecedent drainage (a  measure of the total po­
tential evaporative demand before the event), was linearly 
correlated with the observed threshold (Po = 1 2 .2 mm + 0.35 mm/ 
mm * APET) (R2 = 0.87 5 ). The slope of the excess precipitation/dis­
charge line was a linear function of only PET since the antecedent 
drainage had no effect. 
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Table 4 
Threshold ( in mm, upper table) and excess precipitation slope ( in mm discharge/mm precipitation, lower table) for each antecedent drainage time and PET. 

PET (mm/day) 

0 0.6 1 2  3 4.5 6 9 1 2  3 0  

Antecedent drainage time (days) 1 0  1 7  1 8  2 0  25 30 3 5  46 5 7  1 3 5  

6 6 6 7 8 9 1 3  1 6  5 5  

1 6 6 6 7 7 8 9 1 1  3 5  

3 1 2  1 2  1 3  1 5  1 6  1 8  2 1  25 5 2  

3 12 1 2  1 3  1 5  1 6 1 8  2 1  2 5  5 6  

5 1 4  1 5  1 6 19 2 1  2 4  3 1  38 78 

7 1 6  1 7  1 8  22 2 6  30 39 48 1 0 1  

1 4  1 9  2 1  2 3  3 2  4 0  4 8  6 4  7 6  1 86 

2 1  2 0  23 2 8  4 1  54 64 80 101 2 06 
2 8  2 1  2 6  3 1  50 64 7 5  1 00 137 21 8 

Antecedent drainage time (days) 1 0  0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.33 

0.5 0.48 0.48 0.47 0.46 0.45 0.44 0.42 0.36 

0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.34 

3 0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.32 

3 0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.32 

5 0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.32 

7 0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.42 0.31 

1 4  0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.41 0.32 

2 1  0.5 0.48 0.48 0.47 0.46 0.45 0.43 0.4 0.31 

2 8  0 . 5  0.48 0.48 0.47 0.46 0.45 0.42 0.42 0.28 
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Fig. 8. Dependence of slope of excess precipitation/discharge on soil moisture deficit (antecedent drainage time and PET) and fill and spil l  (bedrock leakage coefficient and 
subsurface storage volume). 

Fill and spill 
To determine the influence of fil l  and spill factors on the pre­

cipitation discharge relationship threshold,  the bedrock leakage 

coefficient and subsurface s torage volume were scaled. Again,  

event V5, with 3 days antecedent drainage, was used for the anal­

ysis, though the entire 1 1  storm hyetograph was used, For simu­

lations where the b edrock leakage coefficient was increased, 

bedrock leakage increased while hil lslope discharge decreased. 

For simulations where the subsurface storage volumes increased, 

more water was held in the pools for longer periods ,  allowing for 

more leakage. Due to the physical disconnection b etwee n  the soi l  

profile and the subsurface storage on the bedrock s urface in  the 

model  structure, changing the bedrock permeabil ity and subsur­

face storage volume did not impact soil  moisture storage or 
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Fig. 9 .  Threshold and slope vs .  products of fill and spill factors. and soil moisture deficit factors. Antecedent PET is  PET' antecedent drainage time. 

evaporation rates. Therefore, any increase in bedrock leakage flux 
was balanced by a reduction in hillslope discharge. 

The threshold for flow increased nonlinearly with increased 
Cbedrock and VpOOh while the slope of the excess precipitation/dis­
charge l ine decreased linearly with both (Figs. 7 and 9, Table 5 ). 
The threshold ( slope) varied from a maximum ( minimum) of 

Table S 

59.2 mm (0.0002 mm/mm) for the highest values of bedrock leak­
age coefficient and subsurface storage volumes to a minimum 
( maximum) of 6.45 mm (0.9 1 mm/mm) for the simulations with 
no leakage or subsurface storage (Figs. 8 and 9, Table 5 ) . For s imu­
lations with no subsurface storage, the threshold was 6 .45 mm and 
the slope 0.70 mm/mm, while for simulations with no bedrock 

Threshold (in mm. upper table) and excess precipitation slope (in mm discharge/mm precipitation. lower table) for each Vpool and Cbedrock combination. For four events with high 

Vpool and Cbedrock the discharge was not non-zero for enough events to determine threshold and slope values. 

V pool scaling factor 

0 0.1 0.2 0.5 0.75 1 .5 2 5 1 0  

Cbedro,k scaling factor 0 6 6 6 6 6 6 6 6 6 6 
0. 1 6 7 7 8 9 9 1 0  1 1  1 8  29 
0.2 6 7 8 9 1 0  1 1  1 3  1 5  2 5  42 
0.5 6 8 9 1 2  1 4  1 5  1 8  20 34 59 
0.75 6 9 1 0  1 3  1 5  1 7  1 9  22 37 49 

6 9 1 1  1 4  1 6  1 8  2 1  23 40 41 
1 .5 6 1 0  1 2  1 6  1 8  1 9  22 25 43 3 8  
2 6 1 1  1 3  1 7  1 9  2 1  24 27 45 NA 
5 6 1 3  1 6  20 23 25 29 35 24 NA 
1 0  6 1 6  1 8  23 26 29 32 33 NA NA 

Cbedrock scaling factor 0 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 
0.1 0.70 0.70 0.70 0.70 0.69 0.69 0.68 0.68 0.64 0.58 
0.2 0.68 0.68 0.68 0.67 0.66 0.66 0.65 0.64 0.57 0.45 

0.5 0.62 0.62 0.61 0.60 0.58 0.57 0.54 0.52 0.37 0.1 8 
0.75 0.58 0.57 0.57 0.54 0.53 0.51 0.47 0.43 0.26 0.07 

0.54 0.53 0.52 0.50 0.47 0.45 0.40 0.36 0. 1 9  0.02 

1 .5 0.47 0.46 0.45 0.41 0.38 0.35 0.30 0.26 0.1 0  0.00 
2 0.42 0.40 0.39 0.35 0.3 1 0.28 0.23 0.1 9  0.06 NA 
5 0.22 0.20 0.1 8  0. 1 4  0. 1 1  0.09 0.06 0.04 0.00 NA 
1 0  0. 1 1  0.09 0.08 0.05 0.04 0.03 0.01 0.01 NA NA 



88 C.B.  Graham. j.j. McDonnell/Joumal of Hydrology 393 (2010) 77-93 

leakage. the threshold was 6.45 mm and the slope 0.95 mm/mm. 
While both parameters impacted storm response. the bedrock 
leakage coefficient seemed to have more impact on the slope. while 
the subsurface storage volume had more impact on the threshold. 
A similar pattern of bedrock leakage coefficient and subsurface 
storage volume influence on the precipitation/discharge relation­
ship was seen in the other events. with different antecedent mois­
ture conditions. 

Thresholds at the watershed scale 

The newfound relationship between the soil moisture deficit 
and fill and spill factors and the precipitation/discharge threshold 
was tested against two long term data records. The relationship 
was tested on a 3.8 ha watershed nearby the modeled hillslope. 
The precipitation/storm discharge relationship at this catchment. 
which has similar geology ( bedrock permeability and subsurface 
storage) and climatic conditions ( storm spacing and PED should 
exhibit the fill  and spill and soil moisture deficit correlated 
threshold relationship seen in the virtual experiments. The sec­
ond test was applied to a set of watersheds at the HJ Andrews 
Long Term Ecological Research Site (HJA). Western Cascades. Ore­
gon. USA. ranging from 8 to 1 0 1  ha. The HJA will be a stronger 
test of the soil moisture deficit factors due to the higher anteced­
ent drainage times for events towards the end of the summer 
season. 

M8 Catchment. Maimai. New Zealand 
Upstream of the instrumented hillslope used for numerical 

modeling in this paper is the M8 watershed. a first order. 3.8 ha ba­
sin instrumented with a V notch weir at the outlet. The watershed 
was gauged for nearly 30 years ( 1 974-2003 ) and a subset of the 
data record ( 1 985 - 1 986) was used for watershed scale threshold 
analysis. Evapotranspiration was derived from estimates of 
monthly evapotranspiration rates using onsite meteorological 
data. interpolated first into daily totals. then hourly using a sine 
curve distribution with a peak at 1 8 : 00 (Vache and McDonnell. 
2006). 

For the analysis.  the 2 year M8 hyetograph was split into 1 40 
storm events. A storm event was defined more than 1 mm precip­
itation preceded by 24 h of less than 1 mm. Storm runoff was de­
fined as the rise in stream discharge above baseflow ( streamflow 
at the initiation of the rain event) from the initiation of the event 
until the beginning of the next event. Total storm precipitation 
during the 2 years of monitoring was 4438 mm. with individual 
event precipitation ranging from 1 to 220 mm. with an average 
storm size of 3 1  mm (Fig. l Ob).  Total storm runoff for the moni­
tored time period was 1 9 1 7  mm. where individual event storm 
runoff ranging from 0 to 1 1 0 mm. with an average of 14 mm. Of 
the 2 years analyzed. the average time between storms was 
3.2 days and the maximum was 1 7.2 days. Estimated PET averaged 
2.4 mm/day. Antecedent potential evapotranspiration (APET; PET 
* time between storms)  ranged from 0 to 45.6 mm. with an average 
of 7 . 1  mm. 

Discharge was predicted at the M8 watershed using the rela­
tionship between the slope and threshold parameters and the 
antecedent potential evaporation. holding the fill and spill factors 
at the values determined in the hillslope model calibration de­
scribed in "Calibrated model parameterization". 

(9) 
where Q; is predicted catchment storm runoff and Pi is measured pre­
cipitation for storm i. The precipitation discharge threshold. Po. is a 
function of the antecedent potential evapotranspiration (Po ; 
1 2.2 mm + 0.35 mm/mm * APED. The slope. a. is a function of PET 
(a ; 0.628 mm/mm-0.007 ( mm/mm)/(mm/day) * PET). Predicted 
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Fig. 1 0. Measured whole storm precipitation/discharge dynamics at two instru­

mented field sites: (al Maimai hillslope (0.09 hal. 2 years of monitoring and (bl M8 
catchment (3 .8 hal. 2 years of monitoring. Hillslope threshold estimated at 20 mm. 

while catchment threshold estimated at 8.5 mm. 

storm discharge was calculated for each storm using three addi­
tional methods :  ( 1 )  Calculating the threshold and slope calculated 
from analysis of the entire data record and applying to Eq. ( 1 0).  
The annual threshold and slope were determined by fitting Eq. ( 1 0) 
to the storm precipitation and discharge data using a least squared 
calibration. ( 2 )  Calculating the annual storm runoff ratio Rye ( total 
annual discharge/total annual precipitation) and applying to the 
equation 

(1 0) 
( 3 )  Calculating the average storm runoff ratio Rave (average of indi­
vidual event runoff ratios)  and applying to Eq. ( 1 1 ). 

Storm runoff as predicted from the threshold and slope derived 
from the virtual experiments fit the measured storm runoff. The 
root mean square error ( RMSE) of the measured vs. modeled dis­
charge was 6.2 mm. and the Nash Sutcliffe efficiency (E) was 
0.93. Total predicted storm runoff was 1 83 7  mm for the 141 mon­
itored storms over 2 years (96% of the measured storm runoff value 
of 1 9 1 6  mm). Using the annual measured slope (0.59)  and thresh­
old (8 .5  mm) from the discharge/precipitation record resulted in a 
RMSE of 6.5 mm and E of 0.92. with predicted total storm runoff of 
2030 mm ( 1 06% of measured). Using the annual measured storm 
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runoff ratio to predict storm discharge led to a poorer fit. with a 
RMSE of 9.0 mm, E of 0.85 ,  and, by definition, total storm runoff 
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Fig. 1 1 .  Measured whole storm precipitation/discharge dynamics at five instru­

mented research catchments : WS I ( 1 0 1 .3 hal, 2 (96 hal, 3 ( 60 hal, 9 (9 hal and 1 0  

( 1 0  h a l  a t  the HJ Andrews Experimental Forest. WSI -3 have 50 years of monitoring, 

and WS9-1 0  have 36. Storms are binned according to antecedent drainage time: (a) 

All  events with less than 5 days antecedent drainage; (bl  al l  events with between 5 

and 10 days antecedent drainage ; and (cl a l l  events with greater than 1 0  days of 

antecedent drainage. Estimated thresholds for the three groups are 0 mm, 56 mm, 

and 83 mm. 

was 1 9 1 6  mm, or 1 00% of measured. Using the average storm run­
off ratio yielded a higher RMSE ( 1 5 .5  mm) and lower E (0.55 ), and 
low total storm runoff ( 1 1 09 mm, or 58% of measured), 

H} Andrews, Oregon, USA 
Further analysis of the watershed scale precipitation discharge 

threshold relationship was performed using the precipitation dis­
charge record at the H J Andrews Experimental Forest ( HJA) in wes­
tern Oregon, USA. At the HJA, continuous discharge and 
precipitation records have been maintained at ten watersheds, 
ranging from 9 to over 1 00 ha for up to 50 years, though we do 
not have evaporation estimates for the duration. Of the ten gauged 
catchments, five (WS l ,  WS2, WS3, WS9, and WSl O, from 9 to 
1 01 hal are at low enough elevation that their annual hydrographs 
are dominated by rainfall, rather than seasonal snowmelt. These 
catchments are all steep, forested sites, harvested in the 1 960s 
(WS l ,  3) ,  1 970s (WS l O) or remaining with an old growth overstory 
(WS2, 9) .  More details on the catchments is found in Jones ( 2000). 
WS1 -3 have been gauged s ince 1 958 ,  while WS9-1 0 have been 
gauged since 1 969. 2246 (WS l -3 )  and 1 7 1 8  (WS9-1 0 )  rainfall 
events were extracted from these records ( storms begin when 
1 mm rain falls ,  and end after 24 h of no precipitation), ranging 
up to 73 1 mm. Storm runoff and total storm precipitation was ex­
tracted from the discharge record as for the M8 watershed proce­
dure. A plot of total storm precipitation vs. discharge shows little 
evidence of a threshold (Fig. 1 1  a). However, if the storms are bin­
ned according to the antecedent drainage time, a threshold appears 
to exist for events with larger than 5 days, and the threshold in­
creases with increasing antecedent drainage time (Fig. 1 1  b and 
c). The threshold appears to be consistent between the gauged 
catchments (�50 mm for greater than 5 days drainage, �80 for 
greater than 1 0  days drainage), despite the wide range of catch­
ment sizes. 

Discussion 

We used the dominant processes concept of Grayson and 
B16schl (2000) to construct a reservoir type numerical model based 
on the Maimai hillslope. MaiModel, with simple unsaturated stor­
age and flow conceptualization, was able to generally reproduce 
observed hydrometric and tracer behavior. The calibrated model 
was able to reproduce the 40 day hydrograph, as well as  each indi­
vidual storm. Additionally, the model was able to reproduce break­
through of a line tracer application 3 5  m upslope - one 
characterized by both rapid initial breakthrough and extended tail­
ing. The model was also able to capture the precipitation-dis­
charge threshold relationship observed in the data record. The 
model was then used to determine the relative importance of fill 
and spill and soil moisture deficit factors on the threshold relation­
ship. Below we highlight some of the issues associated with the 
calibration of the model, the results from the virtual experiments, 
and the application of the new understanding of threshold controls 
at the watershed scale, both at a nearby first order watershed and 
at a different set of watersheds ranging from 8.5 to 1 0 1  ha . 

On the value of data for model construction and testing 

The model objective criteria that we used did not have equal 
strength in either limiting the range of individual parameters, or 
in reducing the number of behavioral parameter sets. In general, 
the model criteria that were effective in reducing the range of indi­
vidual parameters were also effective in reducing the number of 
behavioral parameter sets. Of notable exception was the cumula­
tive tracer breakthrough criterion. While able to reject many 
parameter sets (only 3% of the parameter sets acceptably met the 
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criterion). it did little to reduce the range of acceptable individual 
parameters. except for the bedrock leakage coefficient (Cbedrock). 
While the range of most parameters were reduced through calibra­
tion. soil hydraulic conductivity was not. with acceptable models 
sampling from 94% of the original parameter space. The other 
parameters were well identified through calibration. with a reduc­
tion of the original parameter space by 56-86% (Table 2 ). 

Modeled hydrograph 
The six storm hydrograph criteria were responsible for reduc­

tion in both the range of the individual parameters and the total 
number of acceptable parameter sets ( Fig. 4). As in previous stud­
ies. different subsections of the hydrograph provided different 
amounts of power in parameter identifiability (Seibert and McDon­
nell. 2002 ; Son and Sivapalan. 2007; Tetzlaff et al. . 2008 ). Breaking 
up the calibration hydrograph into 5 distinct time periods. cen­
tered on the significant rain events. proved to be a strong tool for 
both parameter identifiability and parameter set rej ection. While 
2.9% of the parameter sets met the 40 day criterion. only 0.4% of 
the parameter sets resulted in s imulations that met the hydro­
graph criteria for all five of the events. Seibert and McDonnell 
( 2002 ) found that a storm event with the largest peak precipitation 
rate and discharge served as the most stringent criterion in their 
calibration of a similar reservoir model. In our case, the highest 
peak of precipitation and discharge occurred in storm B4, which 
was a relatively weak criterion. 

B2. the event with the lowest peak discharge. and longest dura­
tion, was the most effective in both narrowing the parameter 
ranges and rejecting parameter sets. Whereas the other storms 
were relatively simple. with a single peaked hyetograph and hyd­
rograph. B2 was more complex. with a double peaked hyetograph 
and hydrograph. B2 was especially effective in reducing the param­
eter space for two variables :  lateral subsurface storage and bedrock 
leakage. This sensitivity was l ikely due to the complex filling and 
draining of subsurface storage. a factor that was masked in the 
higher shorter. s ingle peaked events. where the subsurface storage 
is filled early in the event, then monotonically drained. The pro­
longed nature of the B2 event. along with the refilling during the 
second peak. required a more precise definition of the subsurface 
storage processes. This suggests that it is not the size of the event. 
but perhaps the complexity that is important for model calibration. 

Modeled tracer breakthrough 
The modeled tracer breakthrough served as another source for 

parameter identification and parameter set rej ection. Other 
researchers have shown the importance of using tracers ( such as 
isotopic signatures of rainfall ) in addition to hydrometric data for 
model calibration (Fenicia et al. . 2008 ; Son and Sivapalan. 2007 ; 
Soulsby and Dunn. 2003 ; Vache and McDonnell. 2006). Tracers 
are attractive as model objective criteria because tracer and pres­
sure response to precipitation are often quite different ( Le. the ra­
pid catchment response dominated by pre-event water (Sklash and 
Farvolden. 1 979). Tracer breakthroughs also serve to integrate hill­
slope scale response. in contrast to point measurements of water 
table height. soil moisture status or other similar objective criteria. 
While isotopic tracers and mean residence times of tracers have 
been used for model calibration, the use of an applied. chemical 
tracer is  relatively rare for model calibration (although Weiler 
and McDonnell ( 2007) analyzed the Brammer tracer injection with 
a macropore based conceptual model of the Maimai hillslope. dem­
onstrating the importance of the preferential flow network 
structure ). 

While the temporal and spatial patterns of tracer break­
through were not stringent criteria in the MaiModel calibration 
( eliminating only 48% and 1 5% of the parameter sets. respec­
tively). the cumulative tracer breakthrough eliminated 97% of 

the parameter sets. and 66% of the simulations that were deemed 
behavioral for all storms. The calibration runs that modeled all of 
the sub-hydrographs and did not match the measured tracer 
breakthrough had a modeled cumulative tracer breakthrough 
ranging from 8% to 28%, compared to a measured value of 1 4%. 
Of the simulations that had acceptable fits for the hydrographs 
but missed the cumulative tracer breakthrough. 23% were below 
the acceptable limits, and 77% were greater. 54% were more than 
twice the acceptable range from the measured value. This wide 
range of modeled tracer flux for models that acceptably fit the 
hydrograph demonstrates the importance of measurements of 
both particle and pressure response at the hillslope scale for mod­
el calibration and validation. 

While the cumulative tracer breakthrough was effective in 
reducing the total number of behavioral parameter sets .  it did lit­
tle to reduce the ranges of the individual parameters. with the 
exception of Cbedrock. Two possible explanations of the relative 
weakness of the tracer breakthrough on the parameter ranges 
are ( 1 )  the tracer breakthrough is due to a combination of 
parameters. or ( 2 )  the cumulative tracer breakthrough is  too 
weak a test. and a time series of tracer breakthrough is needed. 
Further analysis of the tracer breakthrough against the individual 
parameters suggests that the first option i s  more likely. The 
cumulative tracer breakthrough was compared with the products 
of each pair of calibrated parameters ( 1 0  pairs in total) . The 
cumulative tracer breakthrough was strongly constrained by 
the product of the bedrock leakage coefficient and the subsurface 
storage volume, with a reduction of 94% of the widest possible 
range of the product (Fig. 1 2 ). This suggests that it is both the 
subsurface storage volume and the rate of drainage that controls 
the cumulative tracer breakthrough. more than each parameter 
individually that is  important. The cumulative tracer break­
through was not dependent on any other individual parameter. 
or product of parameters. 

Soil hydraulic conductivity 
Of the five calibrated parameters. all but the soil saturated 

hydraulic conductivity (ksoil ) were significantly better defined 
through calibration. Of the nine calibration criteria. the number 
of behavioral parameter sets that matched each criteria was some­
what correlated to the reduction in the parameter space for each 
criteria ( 0.48 < R2 < 0.67). The ksoil •  however was reduced only 6% 
from the initial parameter range specified ( 1 000% of the maximum 
measured hydraulic conductivity). This 6% is  due more likely 
through chance than an actual narrowing of the possible parameter 
set. as acceptable parameter sets were evenly distributed over the 
calibration range. 

The lack of sensitivity of ksoil is likely due to a combination of 
the system dynamics and the model codification of those dynam­
ics. At Maimai. the measured rainfall intensities were rarely greater 
than the measured soil hydraulic conductivity ( 5-300 mm/h). and 
never reached the estimated conductivity of the 18 cm thick sur­
face horizon ( >6000 m/h (Webster. 1 977) ) . Maximum hourly rain­
fall intensity for the calibration period was 1 9.4 mm/h. and was 
greater than the lower limit of soil matrix hydraulic conductivity 
( 5  mm/h) for only 27 h over the course of the 40 day calibration 
period. This is consistent with the lack observations of Hortonian 
( infiltration excess)  overland flow at the site (Mosley. 1 979). These 
observations were codified into the model by excluding an over­
land flow module. Thus. once initiation of overland flow is  elimi­
nated from the possible model scenarios. much of the model 
sensitivity to ksoil is consequently removed. In other catchment s it­
uations and hydrological scenarios where overland flow is a more 
likely hydrological process (s ites with higher maximum precipita­
tion intensity or lower soil hydraulic conductivity). sensitivity of 
the model to ksoil would be greater. 
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Fig. 1 2. Dotty plots of Cbedm,k and VpOOI vs. 40 day Nash Sutcliffe efficiency (£) and cumulative tracer breakthrough. The grey bars denote the range of acceptable model fits. 

The x axis spans the initial parameter range. The product of the two parameters. a measure of the speed of subsurface storage drainage. is  more identified than either 
parameter individually. 

Improved understanding of thresholds at the hillslope scale 

The calibrated model was able to reproduce the precipitation 
discharge threshold relationship seen at the Maimai hillslope 
trench. From analysis  of measured hillslope discharge by Woods 
and Rowe ( 1 996) and Brammer ( 1 996) ,  a threshold of between 
1 7  and 21 mm was necessary for flow at the hillslope at Maimai 
(Fig. l Oa). This range bounded the modeled threshold ( 1 7.7 mm) 
for the calibrated model. In the numerical simulations, the thresh­
old was found to be due to both fill and spill factors ( subsurface 
storage and bedrock leakage) as well as soil moisture deficit factors 
(PET and antecedent drainage time) (Fig. 1 3 ) . A linear relationship 
between thresholds and the antecedent potential evapotranspira­
tion (APET) was observed, with a slope of 0.38 mm/mm. The rela­
tionship between the product of the bedrock leakage coefficient 
and the subsurface storage volume was nonlinear, with an upper 
bound on the impact of the fill and spill factors on the threshold, 
while a similar bound has not been observed in the soil moisture 
deficit (Fig. 9 ). Logically, a bound must exist for the soil moisture 
deficit, once evaporation depletes the entire soil profile and a 
storm greater than the available storage would overcome the 
threshold. This bound was not met by the current virtual experi­
ments. The lack of threshold after the fill and spill and soil moisture 
deficit mechanisms were eliminated indicates that these two are 
solely responsible for the simulated threshold. 

The slope of the excess  precipitation/discharge line in the model 
output was also found to be positively correlated with both fill and 
spill  factors and PET, while not the antecedent drainage time 
( Fig. 9 ). An increase in both the subsurface storage and bedrock 
leakage coefficient were shown to increase the slope, as an increase 
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in each increased bedrock leakage, both directly ( increased leakage 
coefficient = increased leakage rate) and indirectly ( increased stor­
age = increased driver on leakage and increased late time storage 
and leakage).  An increase in the PET increased the slope, as rainfall 
stored in the soil profile was lost to evaporation during and after 
the storm. With fill and spill and soil moisture deficit removed, 
the slope was unity, indicating these are the only factors affect­
ing the slope in the model. Ninety-four percentage of the reduction 
in the slope was due to fill and spill mechanisms, while 6% of the 
reduction is due to the potential evaporation rate. The small 
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impact of the PET on the slope is due to the limited time that PET 
can impact the discharge after the threshold is reached, as hillslope 
drainage lasted less than 4 days for all s imulations. 

Improved understanding of thresholds at the watershed scale 

Our macroscale hills lope model has shown two causal factors 
for the storm precipitation-discharge relationship seen at the hill­
slope and small catchment scale :  climatic ( event spacing and evap­
orative losses) and geology (bedrock permeability and subsurface 
storage). The geologic factors are difficult to determine, with bed­
rock permeability difficult to measure, and subsurface storage 
depending on the dominant lateral subsurface flow processes and 
the bedrock topography, both of which are difficult to measure. 
The climatic factors, however, are often available in long term data 
sets. While long term evaporation records remain uncommon, new 
analysis of long term precipitation records does provide a way for­
ward towards better prediction of catchment storm response. 

The soil moisture deficit influence on the precipitation dis­
charge threshold and slope was previously suggested in the analy­
sis of the long term precipitation discharge record of the 
instrumented hillslope at Panola, Georgia (Tromp-van Meerveld 
and McDonnell, 2006a). At Panola, it appeared that storms where 
the soil volumetric water content was lower than 40% prior to 
the event (at 70 cm depth in the profile) had a higher threshold 
for flow than those where soils were wetter beforehand. However, 
the data record at Panola had too few storms with sufficiently dry 
antecedent moisture conditions to determine the precise relation­
ship between antecedent moisture and thresholds. At Minamitani, 
japan, the threshold for flow at an instrumented hillslope and near­
by second order catchment was hypothesized to be dependent on 
the flow rate at the initiation of the event (Tani, 1 997 ). As at Pan­
ola, with the limited number of events above and below the 
threshold for each initial flow rate, the precise nature of this 
dependency is unclear. In fact, none of the instrumented hillslopes 
we know of have a sufficient data record with enough storms 
above and below the threshold to determine the precise relation­
ship between the threshold and antecedent moisture conditions. 
While it remains difficult and expensive to maintain gauging for 
a sufficiently long duration at instrumented hillslopes, suitable 
data records exist at many experimental catchments, such as in 
the analysis of the M8 and HjA catchments. 

Analysis using the predictions for whole storm runoff at the 
nearby M8 catchment, based on soil moisture deficit factors, was 
shown to better predict whole storm discharge than the annual 
threshold or runoff ratio analyses. The root mean square error 
was minimized and the difference between the measured and 
modeled annual storm runoff using the soil moisture deficit meth­
od of discharge prediction when compared to predictions made 
using the bulk annual threshold, annual runoff ratio and average 
runoff ratio methods. These predictions were made over a range 
of storms with different average and maximum rainfall intensities, 
durations and precipitation patterns, yet the storm runoff was very 
well predicted based on two simple factors revealed through the 
numerical modeling. 

Additional analysis at five small research watersheds in western 
Oregon ( 1 0- 1 00 hal showed a similar dependence on antecedent 
drainage time for the threshold. While evaporation estimates were 
not available for the duration of the 50 year data record, events 
with long antecedent drainage were shown to exhibit a much high­
er threshold for flow. This threshold appears to be quite high for 
events with longer than 9 days of antecedent drainage 
( �80 mm), for a series of watersheds that are very responsive to 
rainfall ( annual storm runoff ratios approach 38% (McGuire et aI., 
2005 )) . As predicted in the modeling, the slope of the excess pre­
cipitation-discharge line is little changed. 

At the M8 and HjA catchments, there is  little evidence for a 
threshold for flow for events with short « 5  days ) antecedent drain­
age time, perhaps due to minimal effect of bedrock leakage. At the 
Maimai and Panola hillslopes, water that leaks into the bedrock is 
likely not recovered at the hillslope trench. At the M8 and Hj An­
drews catchments, however. bedrock leakage is likely recovered at 
the watershed outlet. At the catchment scale, the fill and spill mech­
anism should then not have a large impact on the precipitation dis­
charge threshold. Therefore, during events where the soil has not 
had a chance to dry due to evaporative losses, a small threshold 
would be expected at these catchments, as seen in this analysis. 

This functional dependence of the threshold on fill and spill and 
soil moisture deficit factors may be a means for prediction of flow 
at ungauged hillslopes and basins. At a s ite where the physical 
properties are similar to either Maimai, or some basin where the 
geologic dependent threshold and slope has been determined. 
the base case threshold can be determined, and the effects of the 
climatic factors would be determined from the storm spacing 
and evaporative demand. The geologic factors (precipitation dis­
charge threshold and slope) can be determined by analysis of the 
system response to precipitation at the lower extreme of PET and 
storm spacing. The analyses of the HjA watersheds suggest that 
the antecedent drainage dependence of the thresholds may apply 
to other steep forested hillslopes and catchments. Special attention 
needs to be placed on locations with different geology, catchment 
geometry and dominant flow processes. 

Conclusions 

Graham et al. ( this issue) developed a new perceptual model of 
hillslope subsurface flow processes at a well studied field site. They 
determined that lateral subsurface flow is  dominated by flow in a 
well connected preferential flow network at the interface between 
the soil profile and permeable bedrock. This paper used this new 
perceptual model as the basis for a numerical model designed to 
model flow and transport based on these dominant processes. The 
model was able to reproduce both hydrometric and tracer data, 
using five tunable parameters. A series of virtual experiments 
aimed at revealing the controls on the threshold response of hill­
slope discharge to precipitation were performed using the numeri­
cal model. We found that both fill and spill (bedrock permeabil ity 
and subsurface storage) and soil moisture deficit ( storm spacing 
and potential evapotranspiration rates)  factors influenced thresh­
old magnitude. While the climatic controls were shown to have a 
large potential impact on flow dynamics, in a climate l ike that of 
the study hillslope. where storm spacing was short (average time 
between storms = 3 days ) and the PET demand was low « 6  mm/ 
day), the geologic controls dominated ( 66% of the threshold and 
94% of the slope of the excess  precipitation/discharge relationship 
were determined by the geologic components). The relationship be­
tween the climatic factors and the precipitation discharge threshold 
and slope were applied to a nearby catchment and demonstrated to 
better predict storm discharge than either the average runoff ration, 
annual runoff ratio or the bulk threshold relationship. 
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